Strong completions of spaces

نویسندگان

  • Hadrian Andradi
  • Weng Kin Ho
چکیده

A non-empty subset of a topological space is irreducible if whenever it is covered by the union of two closed sets, then already it is covered by one of them. Irreducible sets occur in proliferation: (1) every singleton set is irreducible, (2) directed subsets (which of fundamental status in domain theory) of a poset are exactly its Alexandroff irreducible sets, (3) directed subsets (with respect to the specialization order) of a T0 space are always irreducible, and (4) the topological closure of every irreducible set is again irreducible. In recent years, the usefulness of irreducible sets in domain theory and non-Hausdorff topology has expanded. Notably, Zhao and Ho (2009) developed the core of domain theory directly in the context of T0 spaces by choosing the irreducible sets as the topological substitute for directed sets. Just as the existence of suprema of directed subsets is featured prominently in domain theory (and hence the notion of a dcpo – a poset in which all directed suprema exist), so too is that of irreducible subsets in the topological domain theory developed by Zhao and Ho. The topological counterpart of a dcpo is thus this: A T0 space is said to be strongly complete if the suprema of all irreducible subsets exist. In this paper, we show that the category, scTop, of strongly complete T0 spaces forms a reflective subcategory of a certain lluf subcategory, Top, of T0 spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localic completion of generalized metric spaces II: Powerlocales

The work investigates the powerlocales (lower, upper, Vietoris) of localic completions of generalized metric spaces. The main result is that all three are localic completions of generalized metric powerspaces, on the Kuratowski finite powerset. Applications: (1) A localic completion is always open, and is compact iff its generalized metric space is totally bounded. (2) The Heine-Borel Theorem i...

متن کامل

D-completions of net convergence structures

By extending Ershov’s notion of a d-space from topological spaces to net convergence spaces, this paper details the d-completion of certain net convergence structures which are rich enough to support it. In particular, it is demonstrated that spaces which are embeddable into d-spaces which have iterated limits admit d-completions. The main result reported herein generalizes an existing procedur...

متن کامل

Completions of normed algebras of differentiable functions

In this paper we look at normed spaces of differentiable functions on compact plane sets, including the spaces of infinitely differentiable functions considered by Dales and Davie in [7]. For many compact plane sets the classical definitions give rise to incomplete spaces. We introduce an alternative definition of differentiability which allows us to describe the completions of these spaces. We...

متن کامل

Open sublocales of localic completions

We give a constructive characterization of morphisms between open sublocales of localic completions of locally compact metric (LCM) spaces, in terms of continuous functions. The category of open subspaces of LCM spaces is thereby shown to embed fully faithfully into the category of locales (or formal topologies). 2000 Mathematics Subject Classification 03F60, 18B30, 54E99 (primary)

متن کامل

Topo-canonical completions of closure algebras and Heyting algebras

We introduce and investigate topo-canonical completions of closure algebras and Heyting algebras. We develop a duality theory that is an alternative to Esakia’s duality, describe duals of topo-canonical completions in terms of the Salbany and Banaschewski compactifications, and characterize topo-canonical varieties of closure algebras and Heyting algebras. Consequently, we show that ideal compl...

متن کامل

p-TOPOLOGICAL CAUCHY COMPLETIONS

The duality between “regular” and “topological” as convergence space properties extends in a natural way to the more general properties “p-regular” and “p-topological.” Since earlier papers have investigated regular,p-regular, and topological Cauchy completions, we hereby initiate a study of p-topological Cauchy completions. A p-topological Cauchy space has a p-topological completion if and onl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1607.04162  شماره 

صفحات  -

تاریخ انتشار 2016